

ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE, NIGERIA

DEPARTMENT OF MECHANICAL ENGINEERING

SECOND SEMESTER EXAMINATIONS

2017/2018 ACADEMIC SESSION

COURSE:

MEE 506– Applied Thermodynamics II (3 Units)

CLASS:

500 Level Mechanical Engineering

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer any **FOUR** questions

HOD'S SIGNATURE

Date: July/August, 2018

Question 1

- Briefly answer the following questions:
 - i. What do you mean by compressor?
 - ii. Why is the clearance volume provided in a reciprocating compressor?
- A single-stage, single-acting reciprocating compressor has a bore of 210 mm and a stroke of 320 mm. It runs at a speed of 550 rpm. The clearance volume is 5 % of the swept volume and the polytropic index is 1.35 throughput. Intake pressure and temperature are 99 kN/m^2 and 20 ^{0}C , respectively, and the compression pressure is 570 kN/m^2 . Determine.
 - the Free Air Delivered (FAD) in m^3/min (free air conditions 101.325 kN/m^2 and 15 0C) i.
 - the volumetric efficiency referred to the free air conditions ii.
 - the air delivery temperature
 - iv. the cycle power
 - the isothermal efficiency, neglecting clearance

Question 2

- Briefly answer the following questions:
 - i. Mention four (4) usage of compressed air?
 - What is the use of inter-cooler in a 2-stage air compressor?
- A four-stage, single-acting reciprocating compressor running in an atmosphere at pressure and temperature of 1.013 bar and 15 ${}^{0}C$, respectively, has a free air delivery at 2.8 m^{3}/min . The suction pressure and temperature are 0.95 bar and 30 ${}^{0}C$ respectively. Calculate the indicated power

- required, assuming complete inter-cooling, n=1.35, and that the machine is designed for minimum work. The delivery pressure is to be 85 *bar*.
- c) A single-stage, double-acting air compressor has Free Air Delivery (FAD) of $13.5 \, m^3/min$ measured at $1.013 \, bar$ and $15 \, ^{0}C$. The pressure and temperature in the cylinder during induction are $0.95 \, bar$ and $30 \, ^{0}C$ respectively. The delivery pressure is $6.5 \, bar$ and the index of compression and expansion, n=1.35. Calculate:
 - i. the indicated power required
 - ii. the volumetric efficiency. The clearance volume is 5 % of the swept volume

Question 3

- a) Briefly answer the following questions:
 - i. List four (4) classifications of boilers.
 - ii. Give four (4) applications of boilers.
- b) A coal fired boiler installation is seen to have operating parameters as given in Table 1.

Table 1: Operating parameters of a coal fired boiler

S/N	Operating Parameters of a coal fired bones			Unit
	Symbol	Description	1	
1.	m_f	Mass of fuel per kg of fuel	1.00	kg/kg of coal
2.	m_{steam}	Mass of steam generated per kg of fuel	3.91	kg/kg of coal
3.	m_{dfg}	Mass of dry flue gas per kg of fuel	7.54	kg/kg of coal
4.	f_{co}	Percentage by volume of CO present in flue gases	0.55	%
5.	f_{co_2}	Percentage by volume of CO ₂ present in flue gases	14.00	%
6.	f_c	Fraction of carbon present per kg of fuel	0.4165	
7.	T_a	Temperature of air entering combustion chamber	31	°C
8.	T_g	Temperature of flue gases	190	°C
9.	c_{p_g}	Specific heat of dry flue gases	0.23	kcal/kg
10.	$c_{v_{coal}}$	Calorific value of fuel	3501	kcal/kg
11.	$\Delta h = h - h_w$	Difference between enthalpy of final steam	636.87	kcal/kg
		produced and enthalpy of feed water		
12.	Q_{carbon}	Heat loss due to incomplete combustion of one kg of carbon	5744	kcal/kg

Determine,

- i. Total heat available due to fuel burning.
- ii. Heat used for generation of steam.
- iii. Heat lost due to incomplete combustion.
- iv. Heat loss to dry flue gases.
- v. Other heat losses.

Question 4

- a) Briefly answer the following questions:
 - i. What is the main application of steam nozzle in steam turbine?
 - ii. State two contributions to frictional losses in nozzles.
- b) In a nozzle, steam expands from 12 bar and 300 ${}^{0}C$ to 6 bar with flow rate of 5 kg/s. Determine,
 - i. throat and exit area if exit velocity is $500 \, m/s$ and velocity at inlet to nozzle is negligible.
 - ii. Also find coefficient of velocity at exit.

Note: Coefficient of velocity is the ratio of actual velocity of fluid at nozzle exit to the velocity at exit considering isentropic flow through nozzle.

Question 5

- a) Briefly answer the following questions:
 - i. List four (4) classifications of steam engine.
 - ii. Draw and label a schematic illustration of a simple steam engine plant?
- b) A double acting steam engine has bore of 32 cm and stroke to bore ratio of 2.1 with cut-off occurring at 42 % of stroke. Steam enters the engine cylinder at 8 bar and exhausts at 0.15 bar. Engine runs at 200 rpm. Neglecting clearance volume and considering diagram factor of 0.6 determine the indicated horse power.
- c) In a single acting steam engine, steam is admitted at 15 bar, 200 °C and exhausts at 0.75 bar with cut-off occurring at 25 % of stroke. Engine produces 150 hp at 240 rpm. The mechanical efficiency of engine is 85 %, diagram factor is 0.7, brake thermal efficiency is 20 % and stroke to bore ratio is 1.5. Determine,
 - i. the cylinder dimensions, and
 - ii. the specific steam consumption.

Note: Neglect the cross-section area of piston rod and clearance volume.

Question 6

- a) Briefly answer the following questions:
 - i. List four (4) classifications of steam turbine.
 - ii. State four (4) means energy is lost in steam turbines.
- b) A steam engine operates with steam being supplied at 0.2 MPa, 250 °C and expanding up to 0.3 bar. Steam is finally released out at 0.05 bar. Determine,
 - i. Draw the modified Rankine cycle
 - ii. the modified Rankine cycle efficiency, and
 - iii. compare it with the efficiency of Carnot cycle operating between given limits of pressure.

Note: Neglect feed pump work.